

UECA Assessment Symposium 2019

The use of many-facet Rasch analysis in improving rater reliability in rating writing assessments

Phuong Tran

Monash University English Language Centre

DEFINITIONS OF TERMS

- Rater: a person that rates ratees' responses to constructed response tasks
- Scoring rubrics: a set of criteria with descriptors for different levels of performance
- Criterion score: a rating for a criterion
- Task score: the total score of all ratings for a ratee's performance on a task

MANY FACETS IN PERFORMANCE ASSESSMENT

What factors can affect students' scores on a constructed response task?

- Ratings assigned to responses do NOT depend only on items & tasks:
 - Item/task difficulty
 - Student ability
- Other facets may affect ratings (e.g., raters and rating criteria)
 - Rater consistency / reliability + Rater severity / leniency
 - Rating criteria goodness of fit

DEFINITIONS OF TERMS

Rater consistency

A tendency of a rater to assign **the same scores** to papers of the same performance levels (at both criterion level and task level)

Rater severity

A tendency of a rater to assign scores that on average are lower than expected if the scores given by other raters to the same group of test takers are taken into consideration.

Rater leniency

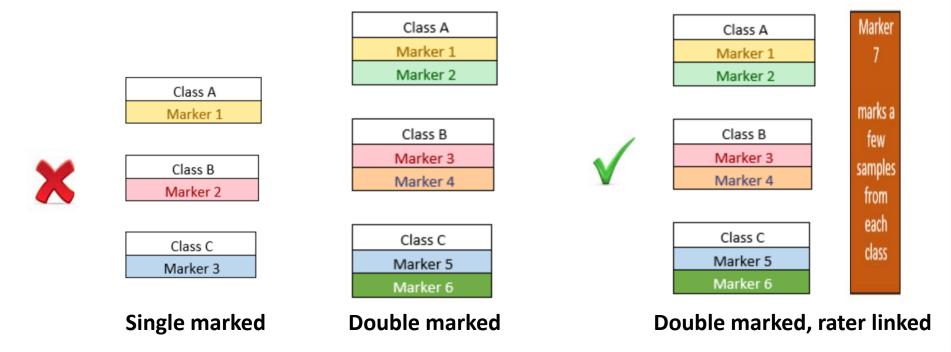
A tendency of a rater to assign scores that on average are higher than expected if the scores given by other raters to the same group of test takers are taken into consideration

RATING BEHAVIOURS

How do you know if a rater is consistent and appropriate in rating?

RATER ANALYSIS USING MANY-FACET RASCH MEASUREMENT (MFRM)

- MFRM models are mathematical models constructed to explain the relationship among facets. It performs the logistic transformation of ratios of successive category probabilities.
- Independent variables: test takers, raters, task, criteria
- Dependent variables: probability of getting a score category
- Raters are analysed based on their ratings to all the students they rate.
- Raters are analysed in relation to one another.


RATER ANALYSIS USING MANY-FACET RASCH MEASUREMENT

- The MFRM simultaneously and independently analyses the impact of different facets and calibrates the impact into one common log-linear scale (logit scale).
- Students' ability levels are controlled for, so ratings can be fairly evaluated.
- Rater severity is controlled for, so examinee measures can be calculated (i.e., independent of the variation in rater severity).
- It gives a fair measure of the students' performance measures that would be obtained if raters were equally lenient/harsh.

DATA COLLECTION

- Papers are at least double-marked.
- Raters need at least 50 score points (13 papers x 4 criterion scores) for stable estimation of rater measures (Linacre, 1994).
- Raters are linked via common papers.

DATA COLLECTION

Example of another way to link papers:

	Class A	Class A	Class B	Class B	Class C	Class C	Class D	Class D	Class E	Class E	Class F	Class F	Class G	Class G	Class H	Class H
Round 1	Mark	er 1	Mar	ker 2	Marl	ker 3	Mar	ker 4	Mar	ker 5	Mark	ker 6	Mar	ker 7	Ma	arker 8
	Class A	Class A	Class B	Class B	Class C	Class C	Class D	Class D	Class E	Class E	Class F	Class F	Class G	Class G	Class H	Class H
Round 1	Marker 1		Marker 2		Mark	er 3	Marl	cer 4	Mark	ker 5	Mark	er 6	Marl	ker 7	Marker 8	
Round 2	Marker 5 Mar		arker 8 Marker 7		Marker 6		Marl	Marker 3 Mar		rker 2 Marl		ker 1 Mark		ker 4	Marker 5	

Papers can be distributed among raters in many different ways, as long as raters
are linked to one another by each pair marking a few common papers.

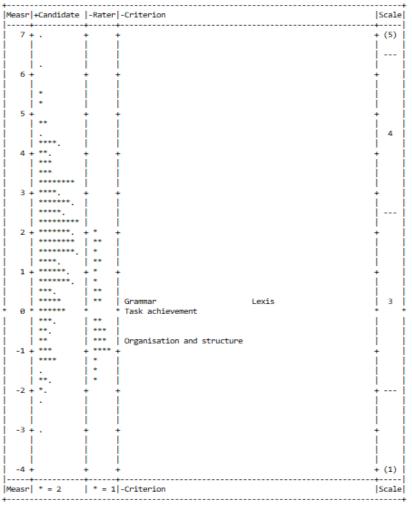
DATA ENTRY, MANIPULATION, AND ANALYSIS

- Criterion scores recorded for all raters and all candidates.
- Students are coded (if necessary).
- Raters are coded (if necessary).

Student	Rater	Criteria	Criterion 1	Criterion 2	Criterion 3	Criterion 4
1	1	1-4	4	4	3	3
1	2	1-4	3	4	3	4
2	1	1-4	3	3	3	3
2	2	1-4	3	3	3	3

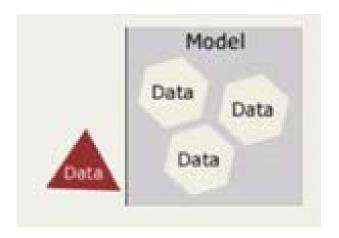
- Control file are written with specifications of the model.
- Data is analysed using Facets (Linacre, 2015).

```
MEB Dip term 7 Summary writing - Data - run 1.txt - Notepad
File Edit Format View Help
Title=MEB Dip Term 7 Summary writing Run 1
Output=MEBDip_Summary_Term7 out.txt
Xtreme=.3
Arrange=mA,N
Ptbis = Yes
USORT=
Iterations=1000
Interrater=2
Facets=3; Candidate, Rater, Criterion
Models=?,?,?,R6
Labels=
1,Candidate
1-262
2,Rater
1-27
3.Criterion
1=Task achievement
2=Organisation and structure
3=Grammar
4=Lexis
Data=
1,1,1-4,4,4,3,3
1,2,1-4,3,4,3,4
2,1,1-4,3,3,3,3
2,2,1-4,3,3,3,3
3,1,1-4,3,3,3,3
3,2,1-4,2,3,2,2
```


4,1,1-4,3,3,3,3 4,2,1-4,4,4,3,3

OUTPUT - ALL FACET VERTICAL 'RULERS'

MEB Dip term 7 Summary writing - Data - run 1 4/10/2016 4:37:20 PM Table 6.0 All Facet Vertical "Rulers".


Vertical = (1*,2*,3A,S) Yardstick (columns lines low high extreme)= 0,4,-4,7,End

SOME EVALUATION CRITERIA

Degree of consistency: Goodness of fit

Reasonable Item Mean-square I for INFIT and OUTFIT	Ranges
Type of Test	Range
MCQ (High stakes) MCQ (Run of the mill)	0.8 - 1.2 0.7 - 1.3
Rating scale (survey)	0.6 - 1.4
Clinical observation Judged (agreement encouraged)	0.5 - 1.7 0.4 - 1.2

- Reliability (Rater separation index): As close to 0 as possible => higher rater agreement
- Degree of appropriateness:

Commonly agreed: Measure/Standard error: ≥2.0 (harsh) or ≤-2.0 (lenient)

Definitely target: Measure/Standard error: ≥5.0 (harsh) or ≤-5.0 (lenient)

OUTPUT - CRITERION MEASUREMENT REPORT

ME Ta	MEB Dip term 7 Summary writing - Data - run 1 4/10/2016 4:37:20 PM Table 7.3.2 Criterion Measurement Report (arranged by N).													
+- 	Total Score	Total Count		Fair(M) Average								Estim. Discrm		N Criterion
- 	1894 1990 1859 1856	582 582 582 582	3.25 3.42 3.19 3.19	3.26 3.44 3.20 3.20		.04 67 .30 .32	. 09	.98	-2.7 3	. 85 . 96	-2.5 6	.65 1.16 1.03 1.19	.50 .53	1 Task achievement 2 Organisation and structure 3 Grammar 4 Lexis
- 	1899.8 54.2 62.6	582.0 .0 .0	.09	3.28 .10 .12	İ	. 00 . 40 . 46	. 09 . 00 . 00	.20	3.3	. 98 . 21 . 25	3.3	1 1	.52 .01 .01	
Mo Mo	Model, Populn: RMSE .09 Adj (True) S.D39 Separation 4.53 Strata 6.38 Reliability .95 Model, Sample: RMSE .09 Adj (True) S.D45 Separation 5.27 Strata 7.36 Reliability .97 Model, Fixed (all same) chi-square: 86.7 d.f.: 3 significance (probability): .00 Model, Random (normal) chi-square: 2.9 d.f.: 2 significance (probability): .23													

OUTPUT – RATER MEASUREMENT REPORT

MEB Dip term 7 Summary writing - Data - run 1 4/10/2016 4:37:20 PM Table 7.2.1 Rater Measurement Report (arranged by mAN).

Tota			Fair(M)			Infit		Estim.				
Scor	e Count	Average	Average	Measu re +	S.E.	MnSq ZStd 	MnSq ZStd	Discrm ++	PtBis	0bs % +	Exp %	Nu Rater +
177		2.46	2.90	1.90	.25	.943	.942		.20	38.9	42.2	•
169	56	3.02	2.91	1.87	.29	.65 -1.7	.63 -1.7	1.28	.27	44.4	46.7	7 7
131		2.52	2.93	1.74	.29	1.25 1.4		.65	.13	52.9	47.8	23 23
244	84	2.90	2.98	1.46	.23	.72 -2.0	.70 -2.0	1.29	.23	43.0	40.7	20 20
420		3.00	3.01	1.31	.18	1.03 .3	1.03 .2	.96	.31	53.9	50.6	4 4
168	56	3.00	3.02	1.22	.28	.70 -1.8	.69 -1.7	1.34	.44	59.2	52.9	2 2
79	28	2.82	3.09	.88	.40	1.14 .5	1.20 .7	.87	.23	46.4	56.4	26 26
440	140	3.14	3.12	.71	.18	.61 -3.8	.56 -4.0	1.40	.43	54.2	53.4	15 15
261		3.11	3.17	.46	.23	.67 -2.3	.62 -2.4	1.33	.42	66.7	58.0	22 22
452	140	3.23	3.19	.38	.17	1.14 1.2	1.13 1.0	.82	.31	46.6	53.1	8 8
258	80	3.22	3.20	.33	.24	.66 -2.0	.67 -1.8	1.27	.43	62.5	56.0	18 18
155	56	2.77	3.22	.21	.28	1.40 2.1	1.38 1.8	.51	.06	54.5	55.6	27 27
448	140	3.20	3.30	13	.18	1.08 .7	1.10 .8	91	.52	38.7	53.8	14 14
369	112	3.29	3.31	15	.20	.81 -1.3	.80 -1.4	1.17	.34	57.1	54.3	3 3
213	56	3.80	3.37	40	.28	.932	.894	1.08	.33	51.7	57.0	11 11
292	84	3.48	3.38	43	.22	1.00 .0	.99 .0	1.01	.14	46.4	56.1	17 17
464	140	3.31	3.41	56	.17	1.07 .6	1.03 .2	.93	.42	55.7	53.1	11
176	56	3.14	3.45	69	.28	1.48 2.3	1.65 2.8	.40	.58	38.9	52.2	12 12
296	84	3.52	3.49	84	.22	.887	.877	1.13	.30	50.0	53.6	21 21
194	56	3.46	3.50	85	.27	1.01 .1	1.04 .2	.98	.17	48.5	53.5	99
503	140	3.59	3.51	92	.17	1.17 1.4	1.19 1.5	.80	.16	42.1	50.9	13 13
513	140	3.66	3.54	-1.01	.17	1.20 1.7	1.22 1.7	.76	.40	43.5	49.5	10 10
189	56	3.38	3.56	-1.07	.27	1.10 .5	1.05 .3	.92	.25	46.1	51.1	6 6
292	84	3.48	3.57	-1.12	.23	.915	.914	1.09	.38	43.0	45.4	16 16
307	84	3.65	3.59	-1.18	.22	1.24 1.5	1.24 1.4	.74	.40	39.8	46.1	5 5
316	84	3.76	3.65	-1.41	.22	.82 -1.1	.79 -1.3	1.19	.44	40.2	44.7	19 19
73	24	3.04	3.73	-1.70	.44	1.82 2.0	1.94 2.1	.34	.28	50.0	57.0	25 25
281	.4 86.2	3.22	3.30	.00	. 24	1.021	1.021		.32	-		Mean (Count: 27)
127	.8 36.5	.34	.24	1.06	.07	.28 1.6	.31 1.6		.13			S.D. (Population)
130	37.2	.35	. 25	1.08	.07	.28 1.6	.32 1.6	l i	.13	l		S.D. (Sample)

Model, Populn: RMSE .25 Adj (True) S.D. 1.03 Separation 4.08 Strata 5.78 Reliability (not inter-rater) .94 Model, Sample: RMSE .25 Adj (True) S.D. 1.05 Separation 4.17 Strata 5.89 Reliability (not inter-rater) .95

Model, Fixed (all same) chi-square: 510.9 d.f.: 26 significance (probability): .00 Model, Random (normal) chi-square: 24.5 d.f.: 25 significance (probability): .49

Inter-Rater agreement opportunities: 1508 Exact agreements: 734 = 48.7% Expected: 773.7 = 51.3%

14

INTERPRETATION OF RESULTS

				3		2	2		1				4
Total score	Total count	Observed Average	Fair (M) Averag	Measure of severity	Aodel i.E.	Infit MnSq	Outfit MnSq	later's ode	Number of papers marked	Interpretation of fit statistics	Arrangement	by severiti	Hypothesis testing (measure =/0)
177	72	2.46	2.5	1.9	0.2	0.94	0.94	24	18	Productive for measurement	The most severe ma the lowest ratings	irker who give:	7.60
169	56	3.02	2.9	1.87	0.23	0.65	0.63	7	14	Productive for measurement		oxdot	6.45
131	52	2.52	2.93	1.74	0.23	1.25	1.21	23	13	Productive for measurement		\sqcup	6.00
244	84	2.9	2.98	1.46	0.23	0.72	0.7	20	21	Productive for measurement			6.35
420	140	3	3.0	1.31	0.18	1.03	1.03	4	35	Productive for measurement		\Box	7.28
168	56	3	3.02	1.22	0.28	0.7	0.69	2	14	Productive for measurement		\Box	4.36
79	28	2.82	3.08	0.88	0.4	1.14	1.2	26	7	roductive for measurement		\Box	2.20
440	140	3.14	3.12	0.71	0.18	0.61	0.56	15	35	Productive for measurement		\Box	3.94
261	84	3.11	3.17	0.46	0.23	0.67	0.62	22	21	Productive for measurement			2.00
452	140	3.23	3.18	0.38	0.1	1.14	1.13	8	35	Productive for measurement		\Box	2.24
258	80	3.22	3.2	0.33	0.24	0.66	0.67	18	20	Productive for measurement			1.38
155	56	2.77	3.22	0.21	0.28	1.4	1.38	27	14	Productive for measurement			0.75
448	140	3.2	3.3	-0.13	0.18	1.08	1.1	14	35	Productive for measurement			-0.72
369	112	3.29	3.3	-0.15	0.2	0.81	0.8	3	29	Productive for measurement			-0.75
213	56	3.8	3.31	-0.4	0.28	0.93	0.89	11	14	Productive for measurement			-1.43
292	84	3.48	3.38	-0.43	0.22	1	0.99	17	21	Productive for measurement			-1.95
464	140	3.31	3.4	-0.56	0.1	1.07	1.03	1	35	Productive for measurement			-3.29
176	56	3.14	3.45	-0.69	0.28	1.48	1.65	12	14	Underfitting (Adams and Khoo, 1996; Wright & Linacre, 1994) - there is some unmodelled noise in the rating, and the rating is more random than expected. Thus, the rater is unproductive for construction of measurement, but not degrading.			-2.46
296	84	3.52	3.43	-0.84	0.22	0.88	0.87	21	21	Productive for measurement			-3.82
194	56	3.46	3.5	-0.85	0.2	1.01	1.04	9	14	Productive for measurement			-3.15
503	140	3.59	3.5	-0.92	0.1	1.17	1.19	13	35	Productive for measurement			-5.41
513	140	3.66	3,54	-1.01	0.1	1.2	1.22	10	35	Productive for measurement			-5.94
189	56	3.38	3.56	-1.07	0.2	1.1	1.05	6		Productive for measurement			-3.96
292	84	3.48	3.51	-1.12	0.23	0.91	0.91	16	21	Productive for measurement			-4.87
307	84	3.65	3.58	-1.18	0.23	1.24	1.24	5	21	Productive for measurement			-5.36
316	84	3.76	3.65	-1.41	0.23	0.82	0.79	19		21 Productive for measurement		-	-6.41
73	24	3.04	3.73	-1.7	0.44	1.82	1.94	\$		Inderfitting (Adams and Khoo, 1996; Wright & Linacre, 1994) - there is some unmodelled noise in the rating, and the rating is nore random than expected. Thus, the rater is unproductive for construction of measurement, but not degrading.	Most lenient marke highest ratings	-3.86,	

OUTPUT – UNEXPECTED RESPONSES

MEB Dip term 7 Summary writing - Data - run 1 4/10/2016 4:37:20 PM Table 4.1 Unexpected Responses (3 residuals sorted by order in data).

- 1				Resd StRes	Num	Can	Nu	Ra	N	Criterion
		2		-1.6 -3.1						
	2	2	3.7	-1.7 -3.3	76	76	8	8	1	Task achievement
	2	2								Task achievement
	ı			Resd StRes						Criterion

OUTPUT – CANDIDATE MEASUREMENT REPORT

MEB Dip term 7 Summary writing - Data - run 1 4/10/2016 4:37:20 PM Table 7.1.1 Candidate Measurement Report (arranged by mAN).

+												
Total	Total	0bsvd	Fair(M)		Model	Infit	:	Outfi	it	Estim.	Corr.	
Score	Count	Average	Average	Measure	S.E.	MnSq	ZStd	MnSq	ZStd	Discrm	PtBis	Num Candidate
38	8	4.75	4.61	6.97	.82	.92	.0	.83	1	1.15	.07	103 103
36	8	4.50	4.42	6.27	.76	.31	-1.8	.30	-1.8	1.84	.63	235 235
34	8	4.25	4.24	5.58	.72	1.98	1.7	2.04	1.8	26	48	30 30
35	8	4.38	4.22	5.50	.70	.82	3	.83	3	1.31	.19	152 152
35	8	4.38	4.19	5.37	.70	1.00	.1	.99	.1	1.02	10	101 101
35	8	4.38	4.16	5.21	.70	1.30	.8	1.32	.9	.48	30	64 64
34	8	4.25	4.08	4.87	.71	.77	3	.74	4	1.28	14	104 104
33	8	4.13	4.06	4.79	.74	2.30	1.8	2.35	1.8	01	.54	135 135
33	8	4.13	4.03	4.66	.71	.75	4	.73	4	1.31	.48	231 231
											ı	
33	12	2.75	2.47	-2.07	.61	1.50	1.2	1.60	1.3	.49	21	68 68
28	12	2.33	2.45	-2.16	.67	1.05	. 2	.98	.1	1.01	.32	28 28
30	12	2.50	2.23	-3.11	.58	.78	7	.76	8	1.42	.16	70 70
0	8	.00		l		Unmeas	urabl	e			.00	127 127
29.1	8.9	3.33	3.31	1.64	.70	.95	2	.95	2		.16	+ Mean (Count: 261)
3.8	1.7	.45		j 1.74		.60	1.3	.62		: :		S.D. (Population)
3.8	1.7			1.74		:		.62		: :		S.D. (Sample)

Model, Populn: RMSE .71 Adj (True) S.D. 1.59 Separation 2.25 Strata 3.33 Reliability .83 Model, Sample: RMSE .71 Adj (True) S.D. 1.59 Separation 2.25 Strata 3.33 Reliability .84

Model, Fixed (all same) chi-square: 1726.4 d.f.: 260 significance (probability): .00 Model, Random (normal) chi-square: 242.3 d.f.: 259 significance (probability): .76

OUTPUT - CANDIDATE MEASUREMENT REPORT

			- I						Difference bt			Difference
Student's		Total	Observed			Model	INFIT	OUTFIT	Obs Aver. &	Raw		in total
code	score	count	_	_		S.E.	MnSq	MnSq	Fair Aver.	score	Fair score	
23	29	12		2.78	-0.88		1.52	1.55	-0.36	9.7	11.1	-1.4
25	30	12	2.5	2.85	-0.55		0.93	0.92	-0.35	10.0	11.4	-1.4
19	28	8	3.5	3.83	3.76	0.68	0.74	0.73	-0.33	14.0	15.3	-1.3
20	28	8	3.5	3.83	3.76	0.68	0.65	0.64	-0.33	14.0	15.3	-1.3
76	28	8	3.5	3.79	3.6	0.7	2.08	2.02	-0.29	14.0	15.2	-1.2
75	29	8	3.63	3.91	4.09	0.7	0.82	0.83	-0.28	14.5	15.6	-1.1
71	27	8	3.38	3.66	3.1	0.72	1.81	1.61	-0.28	13.5	14.6	-1.1
74	27	8	3.38	3.66	3.1	0.72	0.49	0.44	-0.28	13.5	14.6	-1.1
73	26	8	3.25	3.52	2.56	0.74	0.73	0.62	-0.27	13.0	14.1	-1.1
21	34	12	2.83	3.1	0.83	0.63	0.58	0.55	-0.27	11.3	12.4	-1.1
22	24	8	3	3.25	1.53	0.83	0.03	0.03	-0.25	12.0	13.0	-1.0
24	24	8	3	3.25	1.53	0.83	0.03	0.03	-0.25	12.0	13.0	-1.0
67	35	12	2.92	2.68	-1.28	0.65	1.12	1.15	0.24	11.7	10.7	1.0
192	30	8	3.75	3.51	2.54	0.71	0.95	0.95	0.24	15.0	14.0	1.0
189	28	8	3.5	3.26	1.58	0.69	0.88	0.88	0.24	14.0	13.0	1.0
190	29	8	3.63	3.38	2.05	0.69	0.64	0.62	0.25	14.5	13.5	1.0
191	29	8	3.63	3.38	2.05	0.69	1.33	1.34	0.25	14.5	13.5	1.0
143	28	8	3.5	3.25	1.53	0.68	0.9	0.9	0.25	14.0	13.0	1.0
146	28	8	3.5	3.25	1.53	0.68	0.9	0.9	0.25	14.0	13.0	1.0
58	33	12	2.75	2.48	-2.03	0.61	1.5	1.62	0.27	11.0	9.9	1.1
70	30	12	2.5	2.23	-3.11	0.58	0.78	0.76	0.27	10.0	8.9	1.1
68	33	12	2.75	2.47	-2.07	0.61	1.5	1.6	0.28	11.0	9.9	1.1
60	43	12	3.58	3.29	1.72	0.56	1.65	1.72	0.29	14.3	13.2	1.2

RATER ANALYSIS: PRACTICAL USE

MFRM can evaluate all facets

- Rater performance
- Rating scale performance
- Student performance

MFRM can help identify

- Consistent raters and inconsistent raters
- Appropriate, harsh or lenient markers
- Raters with instances of unexpected severe/lenient ratings
- Criteria that fit or do not fit the model
- Criteria are harder to mark accurately

RATER ANALYSES: FEEDBACK AT MUELC

- <u>Inform</u> all raters of their <u>rating performance</u>
- Specify next steps
 - ✓ Consistent and appropriate raters:
 - ☐ continue to refer to self-access sample bank
 - ☐ do required online rater training tasks before next marking period
 - ✓ Inconsistent, lenient, harsh raters:
 - ☐ continue to refer to self-access sample and benchmark bank
 - ☐ do required online rater training tasks before next marking period
 - **□** attend face-to-face rater training

RATER ANALYSES: RATER TRAINING AT MUELC

Message: to **support teachers** in their growth as raters and teachers

Set up of targeted rater training

- Target criteria that are harder to mark consistently and appropriately
- Go through online samples, awarded scores and benchmark comments
- Raters mark a sample on the spot and discuss scores
- Raters reflect on previous marking behaviours and align their scores via the use of the rating scale.
- Give feedback to raters during the training process

THANK YOU ALL FOR YOUR ATTENTION!

REFERENCES

- Linacre, J. M. (1994). Sample size and item calibration stability. *Rasch Measurement Transactions*, 7(4), 328. Retrieved from http://www.rasch.org/rmt/rmt74m.htm.
- Linacre, J. M. (2002). What do infit and outfit, mean-square and standardized mean? Rasch Measurement Transactions, 16(2), 878. Retrieved from http://www.rasch.org/rmt/rmt162f.htm.
- Linacre, J. M. (2015). Facets computer program for many-facet Rasch measurement, Version 3.71.4. Beaverton, Oregon: Winsteps.com.
- Myford, C. M., & Wolfe, E. W. (2004a). Detecting and measuring rater effects using many-facet Rasch measurement: Part I. In E. V. Smith Jr. & R. M. Smith (Eds.), *Introduction to Rasch measurement* (pp. 460 517). Maple Grove, MN: JAM Press.
- Myford, C. M., & Wolfe, E. W. (2004b). Detecting and measuring rater effects using many-facet Rasch measurement: Part II. In E. V. Smith Jr. & R. M. Smith (Eds.), *Introduction to Rasch measurement* (pp. 518 574). Maple Grove, MN: JAM Press.
- Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Copenhagen,
 Denmark: Danish Institute for Educational Research.
- Wright, B. D., & Linacre, J. M. (1994). Reasonable mean-square fit values. *Rasch Measurement Transactions*, *8*(3), 370. Retrieved from http://www.rasch.org/rmt/rmt83b.htm.

